Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qiong Shen, ${ }^{\text {a }}$ Ming-Hua Zeng ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a D Department }}$ of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.062$
$w R$ factor $=0.164$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,3'-(3,6-Dihydroxy-p-phenylene)bis(4,7-dihydroxy-2H-chromen-2-one) dimethylformamide trisolvate

The two chromen-3-yl substituents at the 2- and 3-positions of the 1,4-dihydroxybenzene in the title dimethylformamide (DMF) trisolvate, $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{10} \cdot 3 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, are aligned at 67.1 (1) and $69.8(1)^{\circ}$ with respect to the central aromatic ring. The $1-$ hydroxy group serves as a hydrogen-bond donor to a DMF whereas the substituent at the 3-position functions as a hydrogen-bond donor to two DMF molecules. The other three hydroxy groups interact with donor sites of adjacent molecules, generating a three-dimensional network architecture.

Comment

The 4-hydroxy-2-oxo-2H-chromen-3-yl group is an organic unit commonly found in natural products as well as in compounds that are synthesized for their biological activities. The C atom at the 3-position of 4 -hydroxycoumarin is acidic, and the compound is capable of undergoing a Michael addition across the carbon-carbon double bond of p-benzoquinone (Rani \& Darbarwar, 1987). When the reaction is performed in the presence of pyridine, the product is a $1,4-$ dihydroxybenzene whose 2-position bears the chromen-3-yl substituent; as there is a pyridinium group in the 3-position, the compound is a zwitterionic inner salt (Zhang et al., 2004). For the reaction of 4,7-dihydroxycoumarin and p-benzoquinone, the product is not a disubstituted p-benzoquinone as postulated (Rani \& Darbarwar, 1987), but is a disubstituted p dihydroxyphenol. The compound crystallizes from dimethylformamide (DMF) as a trisolvate, (I) (Fig. 1).

One of the chromen-3-yl groups engages in hydrogen bonding with two DMF molecule whereas the other forms hydrogen bonds with a symmetry-equivalent molecule. As a result of the hydrogen bonds, a three-dimensional network is formed.

Received 11 September 2006
Accepted 11 September 2006

Experimental

4,7-Dihydroxycoumarin $(1.76 \mathrm{~g}, 10 \mathrm{mmol})$ and p-benzoquinone $(0.50 \mathrm{~g}, 5 \mathrm{mmol})$ were dissolved in 50% aqueous acetone $(50 \mathrm{ml})$. The solution was refluxed for 10 h . The solvent was removed and the residue was purified by silica-gel chromatography (cyclohexane/ acetone $1: 4 \mathrm{v} / \mathrm{v}$) to yield the pure title compound. Crystals were grown from DMF as solvent.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{10} \cdot 3 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=681.64$
Monoclinic, $P 2_{1} / n$
$a=11.3725(6) \AA$
$b=14.0520(8) \AA$
$c=20.535(1) \AA$
$\beta=97.058(1)^{\circ}$
$V=3256.7(3) \AA^{3}$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: none
25715 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0791 P)^{2}\right.} \\
&+1.3446 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.164$
$S=1.05$
6956 reflections
510 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.390 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=123(2) \mathrm{K} \\
& \text { Block, brown } \\
& 0.35 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

6956 independent reflections 4883 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$ $\theta_{\text {max }}=27.0^{\circ}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{o} \cdots \mathrm{O} 12$	0.86 (1)	1.72 (2)	2.540 (2)	161 (3)
O4-H4o \cdots O11	0.85 (1)	1.79 (1)	2.638 (3)	172 (3)
$\mathrm{O} 5-\mathrm{H} 5 o \cdots \mathrm{O} 8^{\text {i }}$	0.85 (1)	1.88 (1)	2.718 (2)	170 (3)
O6-H6o . O 13	0.85 (1)	2.04 (1)	2.883 (6)	172 (4)
$\mathrm{O} 6-\mathrm{H} 6 o \cdots \mathrm{O} 13{ }^{\prime}$	0.85 (1)	1.72 (2)	2.532 (5)	159 (4)
$\mathrm{O} 9-\mathrm{H} 90 \cdots \mathrm{O} 1{ }^{\text {ii }}$	0.86 (1)	1.84 (2)	2.642 (2)	156 (3)
$\mathrm{O} 10-\mathrm{H} 100 \cdots \mathrm{O} 2^{\text {iii }}$	0.85 (1)	1.87 (2)	2.666 (2)	155 (4)
Symmetry codes: $-x+1,-y+1,-z+$	$\begin{equation*} -x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2} \tag{iii} \end{equation*}$ (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$;			

One of the three DMF molecules is disordered over two positions; as the site occupancy factors refined to almost 50:50, they were set to exactly 0.5 . For the disorder components, the $\mathrm{C}-\mathrm{O}$ distance was restrained to 1.25 (1) \AA, the $\mathrm{N}-\mathrm{C}_{\text {carbonyl }}$ distance to 1.35 (1) \AA and the $\mathrm{N}-\mathrm{C}_{\text {methyl }}$ distance to 1.45 (1) A . Each component was restrained to be approximately planar. The displacement ellipsoids of the disordered atoms were restrained to approximately isotropic

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms as spheres of arbitrary radii. Only one of the two disordered DMF components is shown. Dashed lines represent hydrogen bonds.
behaviour. Carbon-bound H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$) and were included in the refinement in the riding-model approximation, with $U(\mathrm{H})=1.2-1.5$ times $U_{\text {eq }}(\mathrm{C})$. The methyl groups were rotated to fit the electron density. The hydroxy H atoms were located in a difference Fourier and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA; their displacement parameters were freely refined.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

We thank Guangxi Normal University, the National Science Foundation of Guangxi Province (No. 0447019) and the University of Malaya for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2004). SMART (Version 6.36A) and SAINT (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA.
Rani, B. S. U. \& Darbarwar, M. (1987). J. Indian Chem. Soc. 64, 38-41.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, S.-L., Huang, Z.-S., An, L.-K., Bu, X.-Z., Ma, L., Li, Y.-M., Chan, A. S. C. \& Gu, L.-Q. (2004). Org. Lett. 6, 4853-4855.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

